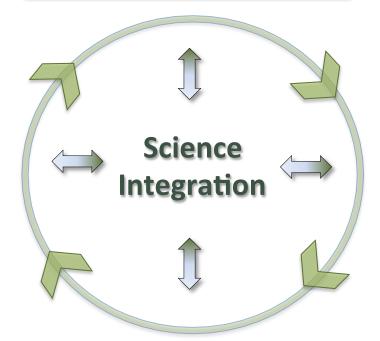
BLM Alaska Landscape Initiatives NASA ABoVE Science Meeting Jan 2016

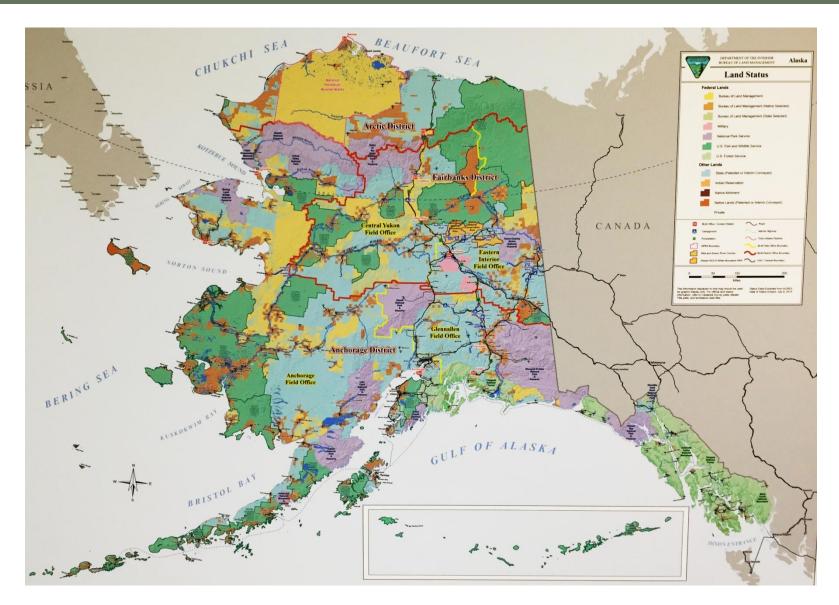
Sec. Orders 3289 and 3330


- Addressing Impacts of Climate Change (2009)
 - The Order also directed the Department's bureaus and offices to "...work together, and with other Federal, state, tribal, and local governments, and private landowner partners, to develop <u>landscape-level</u> strategies for understanding and responding to climate change impacts."
- Mitigation Strategies (2013)
 - "...the use of a <u>landscape-scale</u> approach to identify and facilitate investment in key conservation priorities in a region."

BLM Landscape Approach

Rapid Ecoregional Assessments

Monitoring for Adaptive Management



Field Implementation

Ecoregional Direction

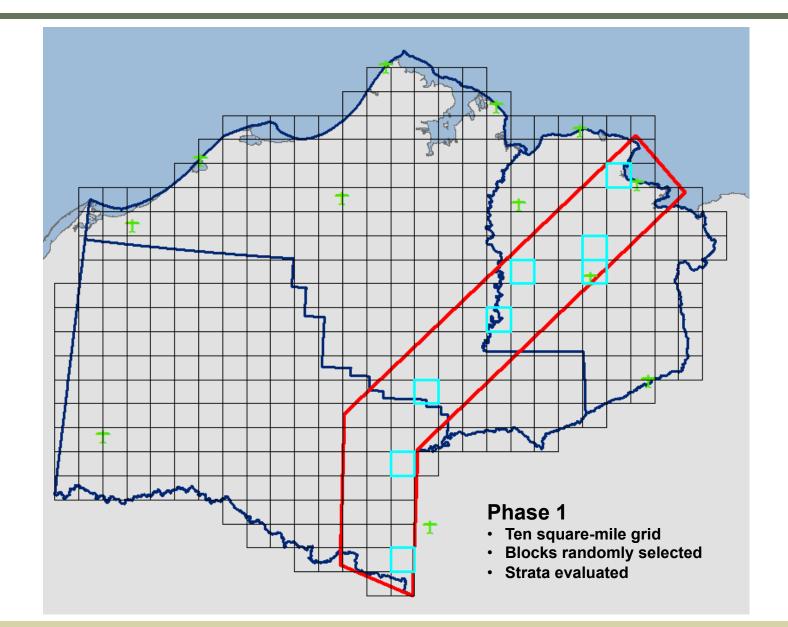
Alaska Land Status

Bureau of Land Management

Assessment, Inventory, and Monitoring Strategy

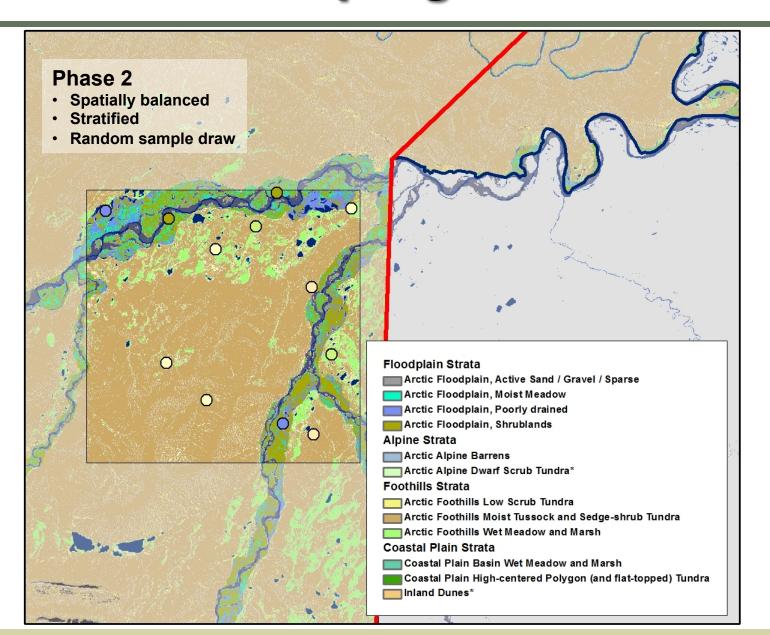
For Integrated Renewable Resources Management

Produced by U.S. Department of the Interior Bureau of Land Management Washington, D.C. 20240 August 2011

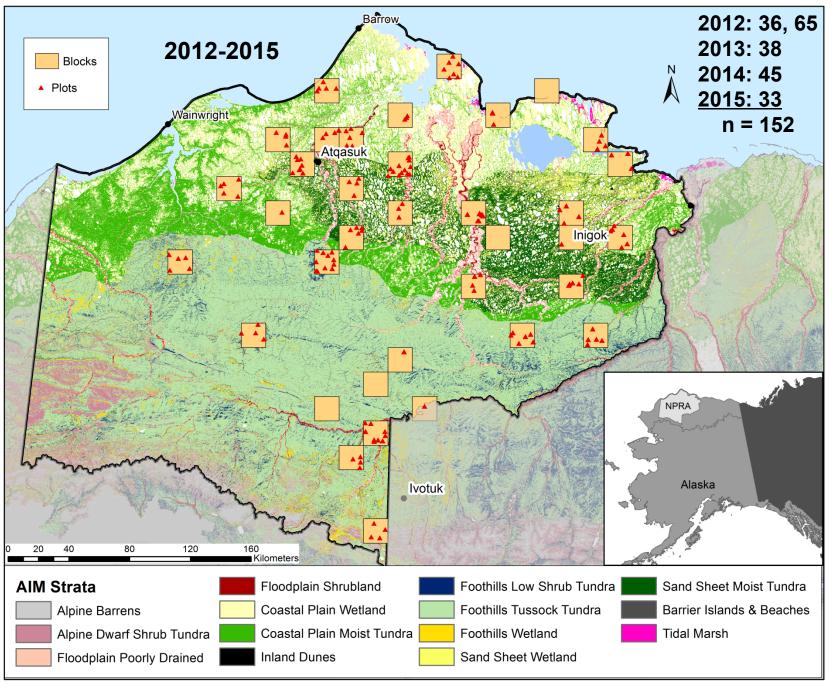


NPR-A AIM Management Objectives

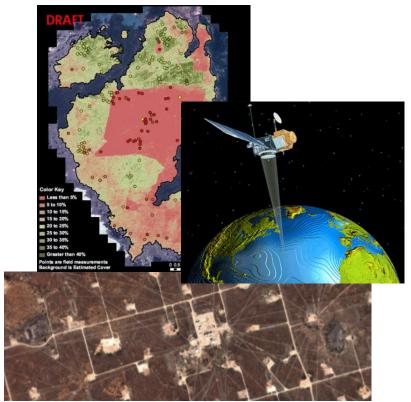
- Establish a long-term monitoring program (including processes/protocols/guidelines) to:
 - Quantitatively describe a pre-development statistically rigorous ecological status and trend baseline in the National Petroleum Reserve-Alaska (NPR-A);
 - Serve as a baseline monitoring network to ascertain the effectiveness of future management actions and adaptively manage, as necessary;
 - Establish an extensive sampling framework to, in part, integrate project-specific intensive sampling; and
 - Build on/integrate rich monitoring work already underway by the Arctic Field Office.



Two-Phase Sampling



Two-Phase Sampling



Data Collection Approaches

Quantitative Condition & Trend from

Plot-level data collection... via "field" visits (core indicators), or "remote" visits (UAS/ other)

Amount, Location, and Pattern

Mixed resolution imagery (2.5m to 250m) and spatial pattern metrics

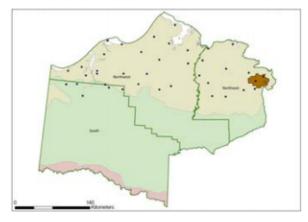
Indicator List (NPR-A pilot)

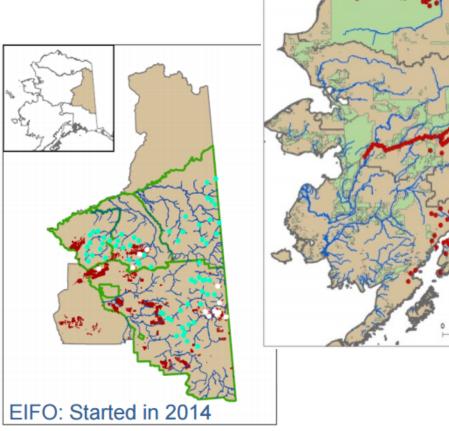
Core:

- vegetation composition
- vegetation height
- bare ground
- non-native invasive plant species
- plant species of management concern
- proportion of soil surface in large canopy gaps
- *landcover (habitat) amount, location, and pattern

Supplemental:

- moss/duff depth
- active layer depth
- *productivity/phenology
- *surficial permafrost features
- *surface water
- soil profile


*Collected via remote sensing



AIM Aquatic

Terrestrial forthcoming...

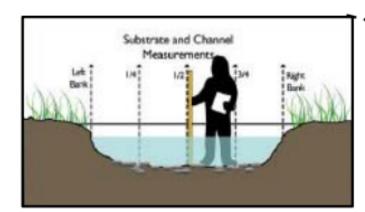
NPR-A: Started in 2015 in collaboration with AKDEC

Upstream End of

Sampling Reach

Indicator List (Aquatic Westwide)

Chemical

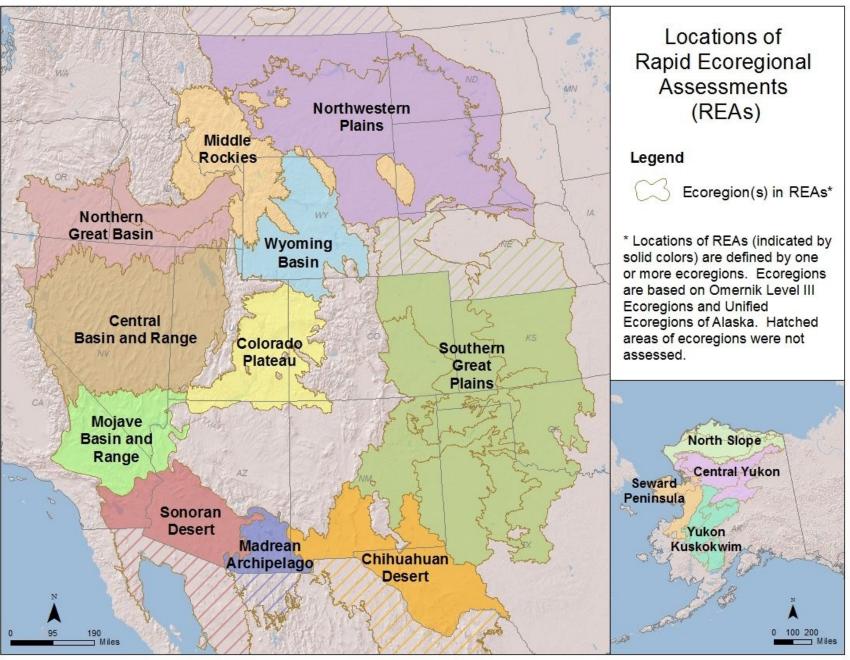

Conductivity
pH
Total Nitrogen¹
Total Phosphorous¹

Biological

Macroinvertebrates % Shade LWD Riparian veg. cover

<u>Physical</u>

Temperature
Substrate
Pool dimensions/freq.
Floodplain connectivity
Bank angle/stability
Thalweg profile¹
Instream habitat complexity¹



BLM REAS

- Rapid Ecoregional Assessment
 - determine ecological values, conditions, and trends within large, regionally connected areas that have similar environmental characteristics
 - seek to identify important resource values and patterns of environmental change that may not be evident when focusing smaller, local land areas
 - gauge the potential of these habitats to be affected by regional change agents
 - "all" lands but "regional" resources
 - "rapid" because:
 - they synthesize existing information, rather than conduct research or collect new data
 - completed within 18-24 months

2.5. Land Owners and Stakeholders

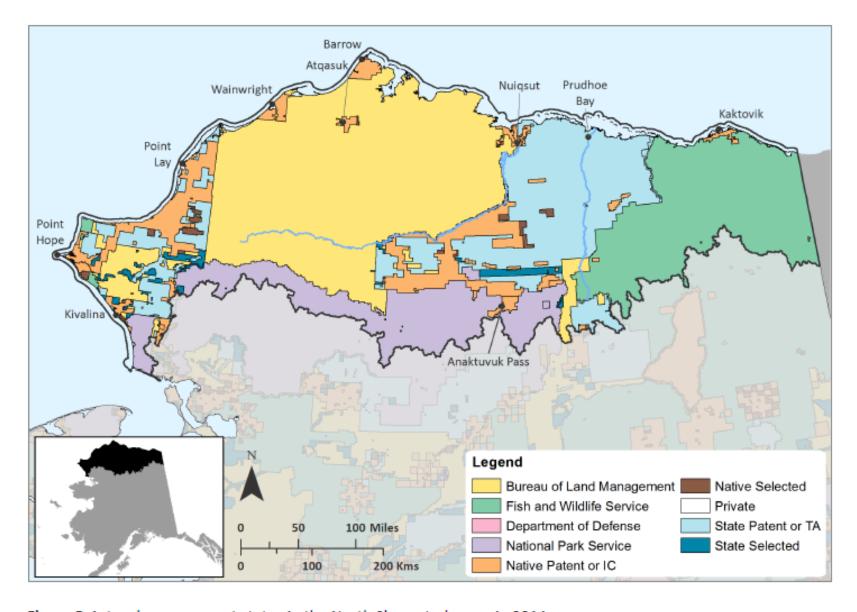


Figure B-1. Land management status in the North Slope study area in 2014.

Table B-2. MQs selected by the AMT for analysis as part of the North Slope REA.

Abiotic Change Agents (Section C) Is the fire regime changing on the North Slope and what is the likely future fire regime (or range AB-1 of regimes) based on climate projections and current knowledge of the relationships between			
climate and fire?			
AB-2 How will permafrost change spatially and temporally over the next two decades?			
TC-3 How will changes in precipitation, evapotranspiration, and active layer depth alter summer surface water availability in shallow-water and mesic/wet tundra habitats and how reliable are these projections?			
TC-5 How is climate change affecting the timing of snow melt and snow onset, spring breakup and green-up, and growing season length?			
Anthropogenic Factors (Section E)			
AP-1 What physical and perceptual limitations to access to subsistence resources by local residents are caused by oil/gas activities?			
How are oil, gas, and mineral development on the North Slope impacting near- and far-field air quality, with particular emphasis on communities and "sensitive class 2" areas such as ANWR, Gates, Noatak?			
AT-1 What parameters can help measure impacts from anthropogenic activities independently of natural cycles and vice versa?			
AT-2 What potential impacts will oil/gas exploration and development have on CE habitat?			
AT-3 What additional contaminants baseline data are needed for fish, birds, marine and terrestrial species, particularly those that affect the health and safety of subsistence foods?			
AF-2 What are the measurable and perceived impacts of development on subsistence harvest of fish?			
TF-3 What are the measurable and perceived impacts of development on subsistence harvest of caribou?			
Aquatic Coarse Filter CEs (Section I)			
AC-1 How does water withdrawal from lakes for oil and gas activities (year-round industrial and domestic use and winter operations) affect lake water quantity and water quality, outflow/stream connectivity, and down-basin stream habitat?			
Aquatic Fine Filter CEs (Section J)			

Table B-1. Change Agents and Conservation Elements selected for the North Slope REA.

Change Agents (CAs)
Climate
precipitation
temperature
thaw date
freeze date
climate envelopes
Fire
return interval
vegetation response
Permafrost
mean annual ground temperature
active layer thickness
Invasive Species
Anthropogenic Uses
subsistence
natural resource extraction
transportation and communication infrastructure
recreation
energy development

Conservation Elements (CEs)			
Coarse-Filter CEs	Fine-Filter CEs		
Terrestrial Coarse-Filter	Terrestrial Fine-Filter		
coastal plain moist tundra	Nearctic brown lemming		
coastal plain wetland	Arctic fox		
sand sheet wetland	caribou		
sand sheet moist tundra	Lapland longspur		
foothills tussock tundra	willow ptarmigan		
alpine dwarf shrub	greater white-fronted goose		
tidal marsh	raptor concentration areas		
marine beach, barrier islands, and spits	Aquatic Fine-Filter		
Aquatic Coarse-Filter	broad whitefish		
deep connected lakes	Dolly Varden		
shallow connected lakes	Arctic grayling		
large streams	burbot		
small streams	chum salmon		

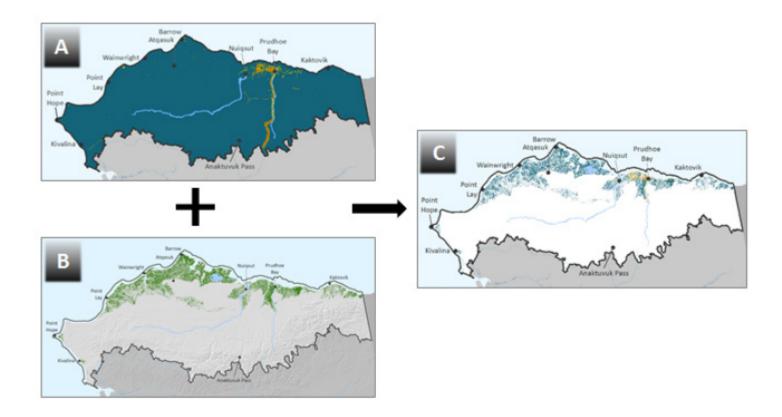


Figure B-5. Example process of assessing status of a Conservation Element (CE). Landscape condition (A) is extracted to the distribution of a CE (B) to generate the CE status (C). Warmer colors in the CE status represent areas of lower expected ecological condition.

K. Data Gaps and Omissions

E. Jamie Trammell¹, Tracey Gotthardt¹, Monica L. McTeague¹, Justin R. Fulkerson¹, Nancy Fresco², Tina Boucher¹, Leah Kenney¹, Diwakar Vadapalli³, and Matthew L. Carlson¹

³Institute of Social and Economic Research, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, Alaska 99508

¹Alaska Natural Heritage Program, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, Alaska 99501

²Scenarios Network for Alaska & Arctic Planning, 3352 College Road, Fairbanks AK 99709

MQ#	Management Question	Dataset Gap	Dataset Needed
TC1	What are the impacts of oil/gas development (i.e. gravel pad and road construction; pipeline construction) on vegetation and hydrology? (Known impacts include burial, dust, saline runoff and altered soil moisture.)	Current extent, much less future extent, is poorly represented in publically available datasets.	Comprehensive infrastructure dataset available to the public
TC 2	What are the changes in habitat and vegetation related to changing permafrost conditions, and what will these changes mean to wildlife and habitats?	Mismatch of land cover datasets used by the different models. Mismatch of land cover used to model species and those used to map coarse-filter CEs.	Comprehensive, unified, hierarchical land cover dataset that is used across all modeling efforts.
TC 3	How will changes in precipitation, evapotranspiration, and active layer depth alter summer surface water availability in shallow-water and mesic/wet tundra habitats and how reliable are these projections?	Lack of understanding of hydrologic conditions, no spatial data, no hydrologic models, and no hydroclimatic models.	Watershed-scale hydrologic models for the North Slope
TC 4	What are the expected changes to habitat as a result of coastal erosion and coastal salinization?	No comprehensive current shoreline and historic shoreline maps and no storm surge model.	Consistently developed current shoreline and historic shoreline maps and a storm surge model.
TC 5	How is climate change affecting the timing of snow melt and snow onset, spring breakup and green-up, and growing season length?	Temporal resolution of climate data is too coarse to precisely quantify these changes	Daily climate data, better snow models
TF1	What are the baseline data for the species composition, numbers of individuals, vegetation type used, and change in numbers/species composition of land birds and their habitat over time?	No spatial data for land birds and their habitat over time.	Need spatial data on land birds and their habitat over time.

